

NATS Server
Security Assessment

February 27, 2025

Prepared for:​

Ginger Collison, Synadia Communications, Inc.​
Organized by Open Source Technology Improvement Fund, Inc.

Prepared by: Spencer Michaels, Sam Alws, Emilio López, Cliff Smith, and Travis Peters

Table of Contents

Table of Contents​ 1
Project Summary​ 3
Executive Summary​ 4
Project Goals​ 7
Project Targets​ 8
Project Coverage​ 9
Threat Model​ 10

Threat Model Scope​ 10
Data Types​ 10
Data Flow​ 10
Components and Trust Zones​ 14
Trust Zone Connections​ 18
Threat Actors​ 22
Threat Scenarios​ 23
Recommendations​ 26

Codebase Maturity Evaluation​ 27
Summary of Findings​ 29
Detailed Findings​ 30

1. Ignored error values during file store operations​ 30
2. User and NKeyUser clone() methods can fail to deep copy an empty allowed
connection types list​ 33
3. Non–constant time comparison of plaintext passwords​ 35
4. Risk of denial of service when restoring Streams​ 37
5. Inconsistent behavior around \r character in parser​ 39
6. Use of unpinned third-party workflow​ 42
7. Use of non-TLS download in Travis CI configuration file​ 44
8. Missing mutex unlocks before return statements​ 45
9. Windows DLL loading susceptible to DLL hijacking attacks​ 49
10. HTTP servers are vulnerable to Slowloris denial-of-service attacks​ 50

A. Vulnerability Categories​ 51
B. Code Maturity Categories​ 53
C. Code Quality Recommendations​ 55
D. Instances of Unchecked Type Assertions​ 57

​
 Trail of Bits​ 1​ NATS Server​
 PUBLIC​ ​ Security Assessment

E. Automated Testing Artifacts​ 62
Fuzzing Inconsistent Behavior from TOB-NATS-5​ 62

F. Automated Static Analysis​ 65
D. Fix Review Results​ 67

Detailed Fix Review Results​ 68
G. Fix Review Status Categories​ 69
About Trail of Bits​ 70
Notices and Remarks​ 71

​
 Trail of Bits​ 2​ NATS Server​
 PUBLIC​ ​ Security Assessment

Project Summary

Contact Information
The following project manager was associated with this project:

Jeff Braswell, Project Manager
jeff.braswell@trailofbits.com

The following engineering director was associated with this project:

David Pokora, Engineering Director, Application Security
david.pokora@trailofbits.com

The following consultants were associated with this project:

​ Sam Alws, Consultant​ ​ ​ Emilio López, Consultant
​ sam.alws@trailofbits.com​ ​ ​ emilio.lopez@trailofbits.com

​ Spencer Michaels, Consultant​ ​ Cliff Smith, Consultant
​ spencer.michaels@trailofbits.com​ ​ cliff.smith@trailofbits.com

​ Travis Peters, Consultant
​ travis.peters@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date​ Event

March 18, 2024​ Pre-project kickoff call

March 25, 2024​ Status update meeting #1

April 1, 2024​ Delivery of report draft

April 1, 2024 ​ Report readout meeting

February 27, 2025​ Delivery of final comprehensive report

April 17, 2025​ Delivery of updated final comprehensive report

​
 Trail of Bits​ 3​ NATS Server​
 PUBLIC​ ​ Security Assessment

mailto:jeff.braswell@trailofbits.com
mailto:david.pokora@trailofbits.com
mailto:sam.alws@trailofbits.com
mailto:emilio.lopez@trailofbits.com
mailto:spencer.michaels@trailofbits.com
mailto:cliff.smith@trailofbits.com
mailto:travis.peters@trailofbits.com

Executive Summary

Engagement Overview
The Open Source Technology Improvement Fund (OSTIF) engaged Trail of Bits to review the
security of the NATS Server project, which provides messaging for distributed systems.

A team of five consultants conducted the review from March 18 to March 29, 2024, for a
total of six engineer-weeks of effort. Our testing efforts focused on security concerns
related to account isolation for multitenant configurations; authentication and
authorization in both static and dynamic modes, including callouts; TLS support in
intercomponent connections; encryption at rest for Stream data; and input parsing. With
full access to source code and documentation, we performed static and dynamic testing of
the codebase, using automated and manual processes.

Observations and Impact
Within the scope of security concerns reviewed in this audit, the NATS Server has an overall
satisfactory security posture. While we found 10 security issues during the review, the
majority are of informational severity—that is, not exploitable or of negligible impact—and
the remaining issues are of medium or low severity. Notably, the issues described in this
report do not appear to indicate systemic flaws in the NATS team’s development process;
rather, they are more likely to be the result of isolated mistakes. Such occasional mistakes
are inevitable in a sufficiently large codebase, but their likelihood can be reduced by
lessening code complexity and by routinely employing static analysis.

Complexity is a notable weak point of the NATS codebase: files for major functionality such
as authentication can be thousands of lines long, the functions within handling multiple
distinct features across many hundreds of lines. Even if this kind of code is not vulnerable
in its current state, there is a risk that developers making future changes could have
difficulty fully understanding it and introduce logic errors. We recommend refactoring
these parts of the codebase to split up long functions and large files to make the individual
blocks of logic contained within them easier to grasp.

We also recommend using static analyzers such as Semgrep and errcheck to identify
issues such as unchecked errors and type assertions, as our own scans with those tools
found a large number of these issues. In a sufficiently large codebase, the introduction of
such flaws over time is inevitable simply due to human error, but it is fairly easy to detect
them using static analysis at build time or before pushing a commit in order to prevent
them from making their way into production code.

Recommendations
Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that the NATS development team take the following steps:

​
 Trail of Bits​ 4​ NATS Server​
 PUBLIC​ ​ Security Assessment

●​ Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or any refactor that may occur when
addressing other recommendations.

●​ Investigate and remediate instances of unchecked type assertions and ignored
error values. See appendix D for a list of unchecked type assertions. A list of
ignored error values can be obtained using the errcheck tool.

●​ Reduce the size and complexity of security-related functions, such as
authentication handlers. Conditional-heavy functions that are many hundreds of
lines long are difficult to understand and audit, making it easier to accidentally
introduce logic errors while making future changes and harder to detect those
issues after the fact. If a function handles several distinct concerns, such as different
types of authentication, refactor it into multiple self-contained, single-purpose
functions and call out to the necessary handler as appropriate for each incoming
authentication request.

●​ Regularly perform static analysis on the codebase using Semgrep, CodeQL, and
actionlint and integrate these tools into the CI pipeline. See appendix F for
further instructions.

​
 Trail of Bits​ 5​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://github.com/kisielk/errcheck

Finding Severities and Categories

The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS

Severity Count

High 0

Medium 3

Low 1

Informational 6

Undetermined 0

CATEGORY BREAKDOWN

Category Count

Configuration 2

Data Exposure 1

Data Validation 1

Denial of Service 2

Error Reporting 1

Patching 1

Timing 1

Undefined Behavior 1

​
 Trail of Bits​ 6​ NATS Server​
 PUBLIC​ ​ Security Assessment

Project Goals

The engagement was scoped to provide a security assessment of the NATS system.
Specifically, we sought to answer the following non-exhaustive list of questions:

●​ Are there circumstances under which potentially sensitive data such as message
contents could be leaked from one account to another in a multitenant
environment?

●​ Are there any cases in which access controls could behave differently depending on
whether an account is statically or dynamically configured, sourced from an
authentication callback, and so on?

●​ Is TLS properly configured on client, Leaf Node, route, and Gateway connections?

●​ Is Stream data encrypted at rest, and are the encryption methods in use reasonably
secure?

●​ Can any untrusted user input trigger a panic, crash a server, or cause a connection
between cluster members to be dropped?

​
 Trail of Bits​ 7​ NATS Server​
 PUBLIC​ ​ Security Assessment

Project Targets

The engagement involved a review and testing of the targets listed below.

NATS Server
Repository ​ https://github.com/nats-io/nats-server

Version ​ 121169ea86756a853a418446b9c7591df761b49d (tag v2.10.12)

Type ​ Go application

Platform ​ Multiple

NATS JWT Implementation
Repository ​ https://github.com/nats-io/jwt

Version ​ c2d30e2ffc632a1ea64030467e5a40e02e4158be (tag v2.5.5)

Type ​ Go library

Platform ​ Multiple

NATS Keys
Repository ​ https://github.com/nats-io/nkeys

Version ​ c865baf4058b0ae6529eeb82fbe86bd8c21f4a36 (tag v0.4.7)

Type ​ Go library

Platform ​ Multiple

​
 Trail of Bits​ 8​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://github.com/nats-io/nats-server
https://github.com/nats-io/jwt
https://github.com/nats-io/nkeys

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following:

●​ Manual review of critical code paths related to the following features:

○​ Multitenancy

○​ Authentication and authorization

○​ TLS support

○​ Encryption at rest

○​ Parser defined in server/parser.go

●​ Use of Semgrep, CodeQL, and actionlint static analysis tools on the nats-server
repository and triaging of results

●​ Dynamic testing and analysis of application features related to the above features,
where feasible

​
 Trail of Bits​ 9​ NATS Server​
 PUBLIC​ ​ Security Assessment

Threat Model

As part of the audit, Trail of Bits conducted a lightweight threat model, drawing from
Mozilla’s “Rapid Risk Assessment" methodology and the National Institute of Standards and
Technology’s (NIST) guidance on data-centric threat modeling (NIST 800-154). We began our
assessment of the design of NATS Server by reviewing published system documentation.
During the week of February 20, 2024, we held a series of three discovery calls with NATS
engineers to analyze the system’s internal design and learn about typical use cases.

Threat Model Scope
This threat model covered the open-source NATS Server software project, documented at
https://docs.nats.io/ and hosted at https://github.com/nats-io/nats-server/. The commercial
Synadia Cloud–hosted NATS service offering and the NATS Execution Engine add-on were
not included in the scope.

Data Types
NATS clients and Servers communicate using a custom protocol consisting of text-based
messages, transmitted over TCP, which may or may not be encrypted. Configuration files
are written in a custom format that resembles markup languages such as JSON and YAML.
In some configurations, authentication messages consisting of JWTs are exchanged
between clients, Servers, and external authentication providers.

The fundamental architecture of NATS is based on the publish-subscribe pattern: each
message has a designated subject that determines its delivery destinations. All operations,
including Cluster and Supercluster management and the JetStream persistence layer, are
built on top of this model.

Data Flow
Below, we depict known connections between system components of a hypothetical NATS
deployment. Developers and system administrators have great freedom in designing a
system running on NATS, and there can be substantial variations between architectures.
The deployment described herein is a basic installation that includes at least one instance
of each of the major components of the optional NATS Server components. Further details
are discussed in the Components and Trust Zones and Trust Zone Connections report
subsections.

In the diagrams below, the dotted red lines indicate trust boundaries separating zones,
where the system enforces (or should enforce) interstitial controls and access policies.
Where additional message-specific authentication or authorization information is needed,
we label the connection with it.

​
 Trail of Bits​ 10​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment.html
https://csrc.nist.gov/publications/detail/sp/800-154/draft
https://docs.nats.io/
https://github.com/nats-io/nats-server/

A NATS system (figure 1) consists of one or more Servers, to which any number of clients
may connect. Typically, such a system will feature multiple Servers joined together into a
mesh network called a Cluster. Servers in a Cluster communicate with each other via
Routes. Multiple Clusters can be further aggregated into a Supercluster by designating one
or more Servers within each Cluster as a Gateway, providing an inter-Cluster
communication channel.

In addition to requiring that clients authenticate upon connecting to a Server, a NATS
deployment can create security domains in the form of Accounts (figure 2), which act as
namespaces of subjects. Servers group individual users into Accounts, and each user can
access only subjects within their own Account. Administrators can selectively loosen this
boundary by configuring Imports and Exports that expose specified resources in one
Account to users in a different Account. Additionally, user-level ACLs can also exercise
fine-grained control over subject authorizations through allowlists and denylists.

Authentication in NATS supports configurations involving an external source of truth. If an
external Account Resolver is in use (figure 4), an external database provides the root of
trust for Accounts. If an auth callout service is in use (figure 3), both authentication and
authorization decisions rely on logic implemented outside of the NATS Cluster.

When a client attempts to authenticate through an auth callout service, the service
handling the client’s initial connection request publishes an authentication request through
a system service. That request is picked up by another client that has network access to an
arbitrary external service that provides authentication. The handling client then publishes
an authentication response, and the message is received by the original server’s callout
service.

For other account resolvers, users can be authenticated against multiple data sources. A
Server may have a list of accounts directly in memory, loaded from a local configuration
file; it may call out to another server using NATS native account resolution; or it may call
out to an external resolver URL.

The Account concept can be extended to create a security boundary between two Servers
through the use of Leaf Nodes, which are Servers configured to run in an auxiliary or
satellite relationship to a Cluster. When a Leaf Node authenticates to a Cluster through a
Server’s Leaf Node Listener, the Leaf Node’s access is limited to one Account. As with
normal users, the Server can also apply ACLs to further limit the Leaf Node’s access to the
chosen Account. Clients connecting to the Leaf Node authenticate according to the Leaf
Node’s local policy, but no client connecting through a Leaf Node can obtain greater access
to the Cluster than the Leaf Node’s own credentials permit.

Clients may connect to a NATS Cluster using a variety of protocols, including the NATS
native text-based protocol, WebSockets, and MQTT. Clients using only Core NATS features
have access to ephemeral publish-subscribe messaging, under which messages are never

​
 Trail of Bits​ 11​ NATS Server​
 PUBLIC​ ​ Security Assessment

queued for delivery to offline clients or stored for later retrieval. A subsystem called
JetStream provides a flexible persistence layer that enables administrators to configure
storage and delayed delivery of messages according to an administrator-defined policy.

The NATS service itself is a single binary; the distinctions between Servers running in
various capacities (Leaf Node, Gateway, etc.) are determined by the features that are
enabled on each instance of the NATS service.

NATS Servers may expose Monitor and Profiler endpoints that provide performance and
debugging information over an HTTP connection.

Figure 1: Architecture for a hypothetical NATS Server Supercluster, including two Clusters, three
Gateways, and one Leaf Node. All supported protocols are represented.

​
 Trail of Bits​ 12​ NATS Server​
 PUBLIC​ ​ Security Assessment

Figure 2: Accounts as a logical trust zone as they exist throughout a Supercluster. Services and
Streams in Account A are selectively made available to other accounts through an Export.

Account B enables its clients to interact with these resources by importing them.

Figure 3: A NATS client authenticating via an external callout service

​
 Trail of Bits​ 13​ NATS Server​
 PUBLIC​ ​ Security Assessment

Figure 4: The various ways in which a NATS Cluster can be configured to resolve accounts

Components and Trust Zones
The following table describes the components that make up the NATS system, as well as
the external dependencies on which they rely. These system elements are further classified
into trust zones—logical clusters of shared functionality and criticality, between which the
system enforces (or should enforce) interstitial controls and access policies.

Component Description

External Clients External clients interact with a NATS Cluster, including publishing and
subscribing to message subjects, without joining a Cluster as Servers.

Online Clients Some NATS clients, including the NATS CLI and client SDK frameworks, are
used to interact with a live Cluster, including sending and receiving
messages and monitoring the Cluster’s performance. Additionally, some
trusted users will connect to the monitoring and profiling endpoints using
web browsers.

Offline Utilities The NATS project publishes utility software, including nsc and nk, that
generate keys and other configuration data offline instead of interacting
with a live Cluster over the network.

Cluster A Cluster is a group of NATS Servers that replicate data across a full mesh of
route connections.

​
 Trail of Bits​ 14​ NATS Server​
 PUBLIC​ ​ Security Assessment

NATS Server A Server is a node within a NATS mesh network; its core function is that of a
message broker, receiving and distributing arbitrary payloads called
messages that are categorized under textual tags called subjects. In
addition to its TCP listener for client connections under the standard NATS
protocol, a Server may expose various additional listeners for
Server-to-Server communication purposes depending on its role within the
system.

Client Listener Each Server runs a TCP listener that accepts connections using the native
text-based publish-subscribe protocol.

Leaf Node
Listener

A Leaf Node Listener is a Server listener that accepts incoming connections
from Leaf Nodes and exchanges messages between Leaf Nodes and the
Server nodes in the Cluster.

Route Listener A Route Listener is a Server component that accepts incoming connections
from other Servers in the same Cluster, establishing a mesh.

Gateway
Listener

A Gateway Listener is a Server component that accepts incoming
connections from Servers in other Clusters operating as Gateways. Such
cross-Cluster connections establish a Supercluster.

Monitor A Monitor is a Server component that exposes Server information and
statistics over HTTPS.

Profiler A Profiler is a Server component that exposes a pprof endpoint for
performance profiling.

Stream The JetStream subsystem is a persistence layer that runs on top of Core
NATS, and a Stream is a persistent representation of the message history
for a subject. The contents of a Stream are exposed to end users through
consumers, which provide a view of the Stream contents that client
applications can subscribe to on a push or pull basis. Streams can be
exposed to other Accounts through Exports.

Service A Service is an entity that follows the request-reply pattern; clients can send
the Service a message representing an action or a query and then await a
reply. Services can be exposed to other Accounts through Exports.

MQTT Bridge An MQTT Bridge is a component that enables MQTT devices to
communicate with NATS Servers, bridging MQTT and NATS topics.

​
 Trail of Bits​ 15​ NATS Server​
 PUBLIC​ ​ Security Assessment

Supercluster A Supercluster is an interconnected group of Clusters that share data over
Gateway connections.

Gateway A NATS Server running as a Gateway exposes, in addition to the normal
Client Listener and any other enabled network services, a TCP service that
accepts incoming connections from Gateway nodes in other Clusters.
Gateway nodes communicate about their respective interest in different
subjects, and when a Gateway node receives a message in which another
Cluster has interest, it replicates the message to the other Cluster via its
Gateway connection.

Each Gateway connection is one way. When two Clusters connect across
Gateways, each Cluster must have at least one outbound Gateway
connection to the peer Cluster.

Leaf Node A Leaf Node establishes a restricted connection to a Cluster and is
responsible for authenticating and authorizing clients, routing client
messages, and applying ACLs.

Leaf Node When a Leaf Node opens an authenticated connection to a Server’s Leaf
Node Listener, it gains access to the Cluster’s data Account associated with
the Leaf Node’s user credentials, subject to any ACLs the Server applies to
that user. Online Clients can connect to the Leaf Node and publish or
subscribe to subjects in the same Account. Leaf Nodes can also maintain
JetStream persistence throughout temporary outages in the connection to
the Cluster.

In configurations with multiple disjoint Clusters or Superclusters, Leaf
Nodes can simultaneously open connections to multiple upstream Servers
using either the same Account or different Accounts.

Account An Account is a namespace of resources, including subjects, messages, and
Streams. Creating multiple Accounts in one Cluster or Supercluster enables
system administrators to implement multitenancy by restricting user access
to resources appropriate for that user’s business role.

System Account The System Account is a default Account that does not contain user data.
Depending on the system’s configuration, Servers communicate with each
other using Services and subjects in the System Account. Additionally,
messages comprising logging events and Cluster statistics are posted to
subjects within the System Account. Clients with credentials for the System
Account can read this data for monitoring purposes and, depending on
their authorization, may be able to alter system configuration by posting
messages to these subjects.

​
 Trail of Bits​ 16​ NATS Server​
 PUBLIC​ ​ Security Assessment

Non-System
Account

Non-System Accounts are user-space Accounts that contain subjects,
messages, and other resources that a client can interact with. If
administrators do not manually configure a Non-System Account, NATS
places all user data in a default Account called the global Account.

Export A Server configuration can permit access to Services and Streams from
outside their containing Accounts by defining an Export. Each Export can
optionally be restricted so that only specified peer Accounts are permitted
to import from it.

Import A Server configuration can permit users in one Account to access exported
Services and Streams by defining an Import. Only Services and Streams
included within an Export can be imported, and the Server will enforce any
Account restrictions specified in the Export.

External
Network

Under some configurations, aspects of authentication and authorization can
be delegated to external systems via a URL that could be hosted anywhere
on the internet that is accessible from the NATS Servers.

Credential
Minter

In JWT-based authentication configurations, external processes in
possession of the operator and/or Account keys are responsible for
generating authentication keys and JWTs. User JWTs are self-proving
through their signatures and need not be maintained inside the NATS
system’s data store.

Account
Resolver

When a Cluster is configured for decentralized JWT authentication, a Server
can optionally retrieve JWTs defining an Account’s root of trust from an
external server identified by a URL specified in the Server’s configuration.

Auth Callout
Service Backend

The auth callout feature allows a Cluster to fully delegate authentication and
authorization decisions to a NATS Service. In most use cases, this Service
will interact with some sort of backend service, such as an LDAP service.

​
 Trail of Bits​ 17​ NATS Server​
 PUBLIC​ ​ Security Assessment

Trust Zone Connections
At a design level, trust zones are delineated by the security controls that enforce the
differing levels of trust within each zone. Therefore, it is necessary to ensure that data
cannot move between trust zones without first satisfying the intended trust requirements
of its destination. We enumerate such connections between trust zones below.

Originating
Zone

Destination
Zone

Data Description Connection
Type

Authentication
Type

External Cluster An Online Client can
connect to any server
running a reachable
Client Listener, MQTT
listener, or
WebSockets listener.
After authenticating,
the client can publish
or subscribe to any
message subjects in
their Account, subject
to any applicable
ACLs.

●​ NATS client
protocol

●​ MQTT

●​ WebSockets

●​ Server-side
TLS

●​ Username
and
password

●​ Static token

●​ Mutual TLS

●​ NKey
challenges

●​ Bearer token

 Cluster When monitoring and
profiling are enabled,
clients can also use
web browsers to
connect to these
endpoints on
individual NATS
Servers.

Additional transport
layer authentication
and encryption may
be added by the NATS
environment’s
network
configuration.

●​ Plaintext
HTTP
(monitoring
and
profiling)

●​ HTTPS
(monitoring)

●​ N/A

Cluster Same Cluster Communications
between Servers in
the same Cluster
occur over route

●​ NATS route
protocol

●​ Mutual TLS

●​ Username
and

​
 Trail of Bits​ 18​ NATS Server​
 PUBLIC​ ​ Security Assessment

connections, which
form a full mesh
between each pair of
peers in the Cluster.

password

 Different
Cluster

Communications
across Clusters occur
over connections
between Servers
running as Gateway
nodes. Gateway
connections form a
full mesh between
Clusters in that there
is always at least one
connection between
each pair of peer
Clusters.
Non-Gateway nodes
communicate only
with other Servers in
the same Cluster.

●​ NATS
Gateway
protocol

●​ Mutual TLS

Cluster External
Network

When an external
Account Resolver is in
use, the NATS Server
handling an
authentication
request retrieves the
issuing Account’s JWT
from the Account
Resolver.

●​ HTTPS ●​ Server-side
TLS

●​ Mutual TLS

External
Network

When auth callout is
configured, the
Service that performs
the callout will usually
interact with an Auth
Callout Service
Backend, such as an
LDAP server. The
parameters of this
connection are
entirely up to the

●​ User
determined

●​ Chosen by
developer

●​ Request and
response
payloads
optionally
encrypted
with XKeys

​
 Trail of Bits​ 19​ NATS Server​
 PUBLIC​ ​ Security Assessment

developer of the auth
callout service.

Leaf Node Cluster When a Leaf Node
connects to a Server’s
Leaf Node Listener,
the Server limits the
Leaf Node’s access to
Cluster data
according to the
authentication
mechanism by which
the Leaf Node
authenticates itself.
These limitations can
include both account
restrictions and
fine-grained ACLs that
control access to
specific subjects.

●​ NATS Leaf
Node
protocol

●​ Server-side
TLS

●​ Username
and
password

●​ Mutual TLS

●​ NKey
challenges

Account Different
Account

When Server
configuration files in a
Cluster define an
Export covering one
or more Services or
Streams, other
Accounts can import
those Services and
Streams so they are
exposed to users in
the importing
Account.

●​ NATS client
protocol

●​ N/A

System
Account

Non-System
Account

Messages posted to
the System Account
can affect data and
operations in a
Non-System Account
through control
messages posted to
System Account
subjects. Such
messages can affect

●​ NATS route
protocol

●​ NATS
Gateway
protocol

●​ Mutual TLS

●​ Username
and
password

​
 Trail of Bits​ 20​ NATS Server​
 PUBLIC​ ​ Security Assessment

authentication
processes, Account
JWT signing keys, and
JetStream replication.

​
 Trail of Bits​ 21​ NATS Server​
 PUBLIC​ ​ Security Assessment

Threat Actors
When conducting a threat model, we define the types of actors that could threaten the
security of the system. We also define other users of the system who may be impacted by,
or induced to undertake, an attack. For example, in a confused deputy attack such as
cross-site request forgery, a normal user who is induced by a third party to take a malicious
action against the system would be both the victim and the direct attacker. Establishing the
types of actors that could threaten the system is useful in determining which protections, if
any, are necessary to mitigate or remediate vulnerabilities. We will refer to these actors in
descriptions of the security findings that we uncovered through the threat modeling
exercise.

Actor Description

Cluster User Users are principals authorized to directly interact with a NATS
Cluster or Supercluster via an Online Client. They belong to and are
issued by a specific Account and can publish or subscribe only to
subjects in the containing Account, subject to any applicable ACLs.

Leaf Node User Instead of authenticating directly into a Cluster, Leaf Node users
authenticate to a Leaf Node, and their access to the Cluster is
limited both by restrictions placed on the Leaf Node by the Cluster
and by restrictions placed on the Leaf Node user by the Leaf Node’s
local authorization configuration.

Network Attacker A network attacker is a malicious actor on an internal network
containing at least one of the Server nodes within a NATS Cluster,
but who has no credentials for any NATS hosts.

External Attacker An external attacker is a malicious actor on the public internet, with
no special privileges anywhere within the NATS system.

​
 Trail of Bits​ 22​ NATS Server​
 PUBLIC​ ​ Security Assessment

Threat Scenarios
The following table describes possible threat scenarios given the design, architecture, and
risk profile of a NATS deployment.

​
 Trail of Bits​ 23​ NATS Server​
 PUBLIC​ ​ Security Assessment

Threat Scenario Actor(s) Component(s)

An attacker joins a malicious node into a Cluster
via a Route Listener, such as by breaching a
network perimeter and gaining access to Server
nodes operating on a trusted network or by stealing
authentication credentials for a Server’s Route
Listener.

Once a malicious Server is part of a Cluster, it has full
read and write access to all subjects in all Accounts,
including the System Account. The presence of a
malicious Server in a Cluster would amount to a total
compromise of the entire NATS deployment.

●​ External
attacker

●​ Network
attacker

●​ Route Listener

An attacker joins a malicious node into a
Supercluster by stealing or forging TLS
authentication credentials for a Gateway Listener.

Once joined into a Supercluster, there is no trust
boundary between two Clusters. Therefore, a
malicious Server that gained membership into a
Supercluster would have achieved total compromise
of the entire NATS deployment.

●​ External
attacker

●​ Gateway
Listener

An attacker compromises a Leaf Node. The
attacker could compromise credentials for a Server’s
Leaf Node Listener and join a malicious Leaf Node
into the Cluster, or the attacker could compromise
the host running a Leaf Node that is already
connected to the Cluster.

Depending on the Server’s configuration, the access
gained may be limited to one Account and could
have further limitations imposed through ACLs
embedded in the compromised credentials. The
attacker would have full read and write access to all
subjects within the scope of the Leaf Node’s access to
the Cluster.

●​ External
attacker

●​ Leaf Node
Listener

​
 Trail of Bits​ 24​ NATS Server​
 PUBLIC​ ​ Security Assessment

An attacker connects to a Leaf Node using
credentials that are valid for the Leaf Node’s local
authentication configuration. In addition to being
limited by the configuration of the Leaf Node’s
connection to the Cluster, the attacker’s access would
be limited by any access controls implemented in the
Leaf Node’s own local authentication configuration.

●​ Leaf Node
user

●​ Client Listener
on Leaf Node

An unauthorized actor gains read and/or write
access to a Non-System Account. Access gained
through this attack will depend on the credentials
used and the system’s authorization configuration. If
the Online Client’s credentials are based on a JWT
with limited authorization claims, the attacker’s
access may be limited to certain subjects.

Any Exports accessible to the attacker’s credentials
could be leveraged to gain access to resources
hosted in different Accounts.

●​ Cluster user

●​ Leaf Node
user

●​ External
attacker

●​ Client Listener

●​ Export/Import

A malicious user gains access to the System
Account through misconfiguration of a low-privilege
user or theft of credentials for a high-privilege user.
Since the System Account houses subjects that NATS
Servers use to manage authentication, system life
cycle events, and JetStream replication, write access
to the System Account enables total compromise of
the entire NATS environment.

By default, users authenticating through the client
listener cannot gain access to the System Account.
Manual configuration is required to permit any entity
aside from a Server authenticated to the same
Cluster to directly publish or subscribe to System
Account subjects.

●​ Cluster user

●​ Leaf Node
user

●​ External
attacker

●​ Client Listener

An attacker compromises the Credential Minter,
either by stealing its NKey or by obtaining the ability
to execute commands on the container or Server
housing the JWT creation process. The attacker could
use the compromised private key to sign arbitrary
JWTs, effectively enabling compromise of all
resources downstream of that private key. If the
affected Credential Minter housed one Non-System
Account’s signing key, the compromise would be

●​ External
attacker

●​ Network
attacker

●​ Credential
Minter

​
 Trail of Bits​ 25​ NATS Server​
 PUBLIC​ ​ Security Assessment

limited in scope to that Account. If an operator key
(i.e., a root trust key for the entire NATS
environment) were affected, the attacker could
create new Accounts and create new users for all
Non-System Accounts, leading to a breach of the
entire system.

An attacker executes a cross-site scripting attack
against a browser that contains a JWT used as a
bearer token. By stealing this token, the attacker
could connect to any Server’s WebSockets listener
and gain access to all subjects for which the
underlying user has authorization. By default, user
JWTs cannot be used as a sole means of
authentication as bearer tokens, and user JWTs are
not stored in cookies. Thus, multiple configuration
settings must be manually changed in order for this
attack to be possible.

●​ External
attacker

●​ Cluster user

●​ Leaf Node
user

●​ WebSockets
listener

An attacker requests Account token data from an
external Account Resolver. These tokens will
enable the attacker to profile the user base and
authentication configuration of the Cluster in
question.

●​ External
attacker

●​ Account
Resolver

An attacker gains access to the Monitor and/or
Profiler endpoints on one or more Servers.
Although information obtainable through these
endpoints does not contain message payloads, they
will at least contain subject names along with usage
data sufficient to broadly fingerprint Cluster traffic.

●​ Network
attacker

●​ External
attacker

●​ Monitor

●​ Profiler

Recommendations
Trail of Bits recommends that the NATS team take the following steps to improve the
system’s overall security:

●​ Lock down the profiling and monitoring endpoints. Currently, they default to
being exposed on all interfaces and are served over plaintext HTTP. These endpoints
should be exposed only on localhost by default and/or should support HTTPS.

●​ Make TLS-first handshakes standard behavior for Leaf Nodes. The recently
added handshake_first option should be enabled by default.

●​ Deprecate weaker authentication modes for Leaf Node connections, including
bearer token and username/password authentication, in favor of mutual TLS or
NKey challenge authentication. If these need to be retained for backward
compatibility reasons, consider disabling them by default and requiring the user to
explicitly enable “legacy auth” through a specific flag.

●​ Disallow mixed TLS and non-TLS endpoints in WebSocket configurations. For
instance, a WebSocket endpoint configured with TLS encryption (wss://) should not
be able to feature an http://-scheme origin in its allowed_origins list.

●​ Ensure that all security controls supported in the Server software are
documented at the time of implementation. For example, NATS engineers
mentioned to us that the use of user JWTs as bearer tokens can be disallowed at the
account level, and this feature appears to have been implemented in PR #3127.
However, we did not see any mention of this feature during our review of the
documentation, so most users are likely unaware of how to take advantage of it.

●​ Add support for client-side authentication for outbound connections to
URL-based external Account Resolvers using NKeys or an API token. The
Account Resolver protocol permits unauthenticated users to download Account
tokens, which enable some fingerprinting of the NATS environment. Adding
client-side authentication to these communications will help protect this data in
environments where mutual TLS authentication is difficult to implement.

●​ Consider implementing an end-to-end testing utility that allows
administrators to quickly gauge what subjects a user has read and write
access to when entering the Cluster through direct Online Client–to–Server
connections and/or through Leaf Nodes. NATS is an abstract platform that
supports a variety of architectures and topologies, and sophisticated deployments
may grow to a point where it is difficult to ascertain how much access a user might
have in a particular context. If NATS published a software tool or example scripts
that help perform that testing at scale, it would help developers validate and debug
access issues in complex environments.

​
 Trail of Bits​ 26​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://github.com/nats-io/nats-server/pull/3127

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic The NATS Server functionality that we considered during
this audit does not feature security-relevant arithmetic
operations.

Not
Applicable

Auditing The NATS Server consistently logs critical actions, errors,
warnings, and so on.

Satisfactory

Authentication /
Access Controls

We did not identify any issues in NATS’s access controls
or authentication functionality. However, NATS’s code
concerning these areas is quite complex, and the range
of possible authentication cases relatively large, making it
difficult to audit exhaustively; therefore, the
maintainability and auditability of these parts of the
codebase would benefit from refactoring.

Satisfactory

Complexity
Management

The NATS codebase has a relatively flat structure, with
some code files reaching thousands of lines in length.
Functions for some critical functionality are extremely
long (reaching many hundreds of lines) and cover
numerous distinct cases that should be split into
separate functions.

Moderate

Configuration Due to time and scope constraints, configuration of third
party components was not considered during this audit,
aside from triaging Semgrep results relating to it (see
TOB-NATS-7, TOB-NATS-9, and TOB-NATS-10).

Not
Considered

Cryptography
and Key
Management

The NATS Server employs appropriate TLS configurations
for connections between all of its component types
(Gateway, client, Leaf Node, etc.). We discovered one
issue involving a non–constant time operation used to
compare passwords (TOB-NATS-3), but its presence does

Satisfactory

​
 Trail of Bits​ 27​ NATS Server​
 PUBLIC​ ​ Security Assessment

not appear to indicate a systemic trend.
In addition, we found no problems with NATS’s
implementation of encryption-at-rest, aside from an
informational-level issue related to error handling
(TOB-NATS-1).

Data Handling Within the limited focus areas of the audit, incoming data
to the NATS Server appears to be handled safely and
appropriately.

We found one inconsistency (TOB-NATS-5) in the parser
defined in server/parser.go, which could lead to a
potential, but unlikely, dropped connection; the presence
of this bug does not appear to indicate a systemic trend.

Satisfactory

Documentation The NATS documentation is comprehensive and regularly
updated.

Strong

Maintenance Due to time and scope constraints, patching mechanisms
were not considered during this audit.

Not
Considered

Memory Safety
and Error
Handling

NATS includes many instances of ignored error values
and unchecked type assertions. See appendix D for a list
of unchecked type assertions; there are 214 of them.
There are around 3,600 instances of ignored error values,
which would be too large to fit into an appendix, but this
list can be obtained using the errcheck tool.
In one issue, we found that ignored error values could
lead to faulty or missing encryption at rest, improper
data erasure, or a null pointer dereference panic (see
TOB-NATS-1).

Moderate

Testing and
Verification

Due to time and scope constraints, test coverage was not
considered during this audit.

Not
Considered

​
 Trail of Bits​ 28​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://docs.nats.io/
https://github.com/kisielk/errcheck

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Ignored error values during file store operations Error Reporting Informational

2 User and NKeyUser clone() methods can fail to
deep copy an empty allowed connection types list

Undefined
Behavior

Informational

3 Non–constant time comparison of plaintext
passwords

Data Exposure Medium

4 Risk of denial of service when restoring Streams Denial of Service Medium

5 Inconsistent behavior around \r character in
parser

Data Validation Informational

6 Use of unpinned third-party workflow Patching Medium

7 Use of non-TLS download in Travis CI
configuration file

Configuration Informational

8 Missing mutex unlocks before return statements Timing Informational

9 Windows DLL loading susceptible to DLL hijacking
attacks

Configuration Informational

10 HTTP servers are vulnerable to Slowloris
denial-of-service attacks

Denial of Service Low

​
 Trail of Bits​ 29​ NATS Server​
 PUBLIC​ ​ Security Assessment

Detailed Findings

1. Ignored error values during file store operations

Severity: Informational Difficulty: High

Type: Error Reporting Finding ID: TOB-NATS-1

Target: server/filestore.go

Description
There are multiple instances in filestore.go in which error values are ignored, which
could lead to the following issues:

●​ Faulty or missing encryption-at-rest

●​ Improper data erasure

●​ A null pointer dereference panic

This issue is rated as informational severity because it is highly unlikely for an error to
happen in the relevant code paths.

In the genEncryptionKey function, the error value returned by aes.NewCipher is put
into the e variable, which is then checked, but the err variable is returned instead (see
figure 1.1). This means that, in the case of an error, nil, nil will be returned. Functions
that call genEncryptionKey would assume that it returned successfully and then use the
first returned nil value as a cipher.AEAD interface. This can lead to a null pointer
dereference panic if the Seal or Open methods are called on the first nil return value.
More importantly, if the first nil return value is assigned into the fs.aek property, then
encryption-at-rest would not be used, and the user would have no indication of that fact.

func genEncryptionKey(sc StoreCipher, seed []byte) (ek cipher.AEAD, err error) {
​ if sc == ChaCha {
​ ​ ek, err = chacha20poly1305.NewX(seed)
​ } else if sc == AES {
​ ​ block, e := aes.NewCipher(seed)
​ ​ if e != nil {
​ ​ ​ return nil, err
​ ​ }
​ ​ ek, err = cipher.NewGCMWithNonceSize(block, block.BlockSize())
​ } else {
​ ​ err = errUnknownCipher

​
 Trail of Bits​ 30​ NATS Server​
 PUBLIC​ ​ Security Assessment

​ }
​ return ek, err
}

Figure 1.1: The genEncryptionKey function
(nats-server/server/filestore.go:638–651)

In multiple places, the error value returned by the rand.Read function is ignored when a
nonce for encryption is generated (see figure 1.2). This can cause the same nonce to be
reused multiple times, potentially allowing the encrypted data to be decrypted by an
adversary.

 683 // Generate our nonce. Use same buffer to hold encrypted seed.
 684 nonce := make([]byte, kek.NonceSize(),
kek.NonceSize()+len(seed)+kek.Overhead())
 685 rand.Read(nonce)
 686
 687 bek, err = genBlockEncryptionKey(sc, seed[:], nonce)
 688 if err != nil {
 689 ​ return nil, nil, nil, nil, err
 690 }
 691
 692 return aek, bek, seed, kek.Seal(nonce, nonce, seed, nil), nil
...
 778 nonce := make([]byte, fs.aek.NonceSize(),
fs.aek.NonceSize()+len(b)+fs.aek.Overhead())
 779 rand.Read(nonce)
 780 b = fs.aek.Seal(nonce, nonce, b, nil)
...
 7550 nonce := make([]byte, fs.aek.NonceSize(),
fs.aek.NonceSize()+len(buf)+fs.aek.Overhead())
 7551 rand.Read(nonce)
 7552 buf = fs.aek.Seal(nonce, nonce, buf, nil)
...
 8572 nonce := make([]byte, o.aek.NonceSize(),
o.aek.NonceSize()+len(buf)+o.aek.Overhead())
 8573 rand.Read(nonce)
 8574 return o.aek.Seal(nonce, nonce, buf, nil)
...
 8667 nonce := make([]byte, cfs.aek.NonceSize(),
cfs.aek.NonceSize()+len(b)+cfs.aek.Overhead())
 8668 rand.Read(nonce)
 8669 b = cfs.aek.Seal(nonce, nonce, b, nil)

Figure 1.2: Unchecked error values from rand.Read (nats-server/server/filestore.go)

In the mb.eraseMsg method, the error value returned by the rand.Read function is
ignored when data is overwritten (see figure 1.3). This can cause the data to be improperly
erased, with no indication to the user that this has happened.

​
 Trail of Bits​ 31​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/server/filestore.go#L638-L651
https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/server/filestore.go

 4124 // Randomize record
 4125 data := make([]byte, rl-emptyRecordLen)
 4126 rand.Read(data)

Figure 1.3: Unchecked error value from rand.Read in mb.eraseMsg method
(nats-server/server/filestore.go:4124–4126)

Recommendations
Short term, add checks to ensure errors returned by rand.Read are non-null. In addition,
change the code shown in figure 1.1 so that the e variable is returned rather than the err
variable.

Long term, use the errcheck tool to find other instances of unchecked errors and ensure
that none of them can lead to issues.

​
 Trail of Bits​ 32​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/server/filestore.go#L4124-L4126
https://github.com/kisielk/errcheck

2. User and NKeyUser clone() methods can fail to deep copy an empty allowed
connection types list

Severity: Informational Difficulty: N/A

Type: Undefined Behavior Finding ID: TOB-NATS-2

Target: nats-server/server/auth.go:69-108

Description
The User and NKeyUser structs both feature an AllowedConnectionTypes member, a
map value. When this map is present but empty, the structs’ clone() methods will not
deep-copy the map. Therefore, if a User or NKeyUser object is cloned, both the original
and the copy’s AllowedConnectionTypes field will point to the same object; if a change is
made to either one, it will be propagated to the other as well. This could result in
unexpected behavior when either type of user object is cloned and subsequently their
associated AllowedConnectionTypes list is altered.

The conditional check in User.clone() beginning on line 88 (highlighted in figure 2.1) will
not clone the AllowedConnectionTypes map if the original value has a zero length. This
is the case if the underlying map value is nil, in which case no cloning is necessary, but is
also the case when the map is non-nil but contains no items. In the latter case, the
AllowedConnectionTypes map will not be deep-copied, resulting in the same issue as
noted above for the Account field.

// NkeyUser is for multiple nkey based users
type NkeyUser struct {
​ Nkey string `json:"user"`
​ Permissions *Permissions `json:"permissions,omitempty"`
​ Account *Account `json:"account,omitempty"`
​ SigningKey string `json:"signing_key,omitempty"`
​ AllowedConnectionTypes map[string]struct{} `json:"connection_types,omitempty"`
}

// User is for multiple accounts/users.
type User struct {
​ Username string `json:"user"`
​ Password string `json:"password"`
​ Permissions *Permissions `json:"permissions,omitempty"`
​ Account *Account `json:"account,omitempty"`
​ ConnectionDeadline time.Time
`json:"connection_deadline,omitempty"`
​ AllowedConnectionTypes map[string]struct{} `json:"connection_types,omitempty"`
}

​
 Trail of Bits​ 33​ NATS Server​
 PUBLIC​ ​ Security Assessment

// clone performs a deep copy of the User struct, returning a new clone with
// all values copied.
func (u *User) clone() *User {
​ if u == nil {
​ ​ return nil
​ }
​ clone := &User{}
​ *clone = *u
​ clone.Permissions = u.Permissions.clone()

​ if len(u.AllowedConnectionTypes) > 0 {
​ ​ clone.AllowedConnectionTypes = make(map[string]struct{})
​ ​ for k, v := range u.AllowedConnectionTypes {
​ ​ ​ clone.AllowedConnectionTypes[k] = v
​ ​ }
​ }

​ return clone
}

// clone performs a deep copy of the NkeyUser struct, returning a new clone with
// all values copied.
func (n *NkeyUser) clone() *NkeyUser {
​ if n == nil {
​ ​ return nil
​ }
​ clone := &NkeyUser{}
​ *clone = *n
​ clone.Permissions = n.Permissions.clone()
​ return clone
}

Figure 2.1: The User and NKeyUser structs and clone() methods at
nats-server/server/auth.go:59–108

Recommendations
Short term, change the conditional check on line 88 to check for a non-nil map instead of a
non-zero-length one.

if u.AllowedConnectionTypes != nil { … }

Long term, when adding new fields to an existing struct, ensure that clone() and similar
methods are updated accordingly.

​
 Trail of Bits​ 34​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/server/auth.go#L59-L108

3. Non–constant time comparison of plaintext passwords

Severity: Medium Difficulty: Medium

Type: Data Exposure Finding ID: TOB-NATS-3

Target: server/auth.go:1415–1425

Description
When one component of the NATS system (Gateway, Leaf Node, client, etc.) authenticates
to another using a password, the submitted password is compared to the stored one using
the comparePasswords() function, shown in figure 3.1.

func comparePasswords(serverPassword, clientPassword string) bool {
​ // Check to see if the server password is a bcrypt hash
​ if isBcrypt(serverPassword) {
​ ​ if err := bcrypt.CompareHashAndPassword([]byte(serverPassword),
[]byte(clientPassword)); err != nil {
​ ​ ​ return false
​ ​ }
​ } else if serverPassword != clientPassword {
​ ​ return false
​ }
​ return true
}

Figure 3.1: The comparePasswords() function in
nats-server/server/auth.go:1415–1425

In the event that the password is stored as a BCrypt hash, the passwords are compared
using the constant-time bcrypt.CompareHashAndPassword() function. However, if not,
comparePasswords() falls back to simple string comparison, which is not constant time.

Exploit Scenario
An administrator sets up a NATS Cluster that includes client credentials with a
non-BCrypted password. A malicious client attempts to connect to the Cluster by brute
forcing a password and is able to infer a valid password character by character since invalid
prefixes are rejected early, while valid ones take more time.

Recommendations
Short term, use a constant-time string comparison for plaintext passwords: have the
comparePasswords() function compare all characters of both strings and then return a
result thereafter; the function should not terminate early.

​
 Trail of Bits​ 35​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/server/auth.go#L1415-L1425

Long term, enumerate all password checks within the application and ensure that they use
constant-time comparison functions.

​
 Trail of Bits​ 36​ NATS Server​
 PUBLIC​ ​ Security Assessment

4. Risk of denial of service when restoring Streams

Severity: Medium Difficulty: High

Type: Denial of Service Finding ID: TOB-NATS-4

Target: nats-server/server/stream.go:5657–5683

Description
The NATS Server allows Streams to be restored from S2-compressed tar archives. The
implementation iterates over the files that are contained in the archive and copies them to
the local filesystem. However, the sizes of the files are not checked, and as the archive itself
is compressed, the sizes can be many times larger than the original archive.
Uncompressing and writing these files to storage could take a significant amount of CPU
time and exhaust the available storage on the local filesystem.

tr := tar.NewReader(s2.NewReader(r))
for {
​ hdr, err := tr.Next()
​ if err == io.EOF {
​ ​ break // End of snapshot
​ }
​ // (...)
​ fd, err := os.OpenFile(fpath, os.O_CREATE|os.O_RDWR, 0600)
​ if err != nil {
​ ​ return nil, err
​ }
​ _, err = io.Copy(fd, tr)
​ fd.Close()
​ if err != nil {
​ ​ return nil, err
​ }
}

Figure 4.1: There is no size check during extraction, and the file contents are copied fully.
(nats-server/server/stream.go#5657–5683)

Exploit Scenario
An attacker crafts a relatively small S2-compressed tar archive with several large files that
can be compressed with a very high compression ratio. The attacker manages to have the
NATS Server attempt to restore a Stream from it. The NATS Server decompresses the
archive in a streaming fashion while writing the uncompressed contents to storage,
resulting in high CPU use and increased storage use.

​
 Trail of Bits​ 37​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://github.com/klauspost/compress/blob/master/s2/README.md
https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/server/stream.go#L5657-L5683

Recommendations
Short term, add a file size check to limit the amount of data that may be processed. Use
io.CopyN instead of io.Copy to limit the amount of data actually copied to storage.

Long term, use static analysis tools such as Semgrep and integrate them into the project’s
CI process to detect similar issues during development. Semgrep’s
go.lang.security.decompression_bomb.potential-dos-via-decompression-bo
mb rule can discover this issue.

​
 Trail of Bits​ 38​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://semgrep.dev/r?q=go.lang.security.decompression_bomb.potential-dos-via-decompression-bomb
https://semgrep.dev/r?q=go.lang.security.decompression_bomb.potential-dos-via-decompression-bomb

5. Inconsistent behavior around \r character in parser

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-NATS-5

Target: server/parser.go

Description
The parser defined in server/parser.go handles the carriage return character (\r)
inconsistently when it does not immediately precede a newline character (\n). If an argBuf
buffer is used, the \r character is ignored, but if argBuf is nil, the \r character can be
included in the final argument byte string and may cause a different character to be
dropped (the character before the \n or the final character in the input buffer).

Figures 5.1 and 5.2 demonstrate this behavior in the parsing code for PUB message
arguments. When a \r character is encountered, it causes the c.drop variable to be set to
1 (see line 412 in figure 5.1). Unlike normal characters (see line 440), the \r character does
not get appended onto the argBuf buffer when argBuf is non-nil. When a \n character is
encountered, the arg variable, which represents the full argument to the PUB message,
may be taken in two different ways. When argBuf is non-nil, it is assigned into arg (see
line 416). When argBuf is nil, a subset of buf is taken instead, optionally removing trailing
characters as determined by the drop variable (see line 419). This means that a byte string
that has a \r in the middle but not directly before the \n will have its last character before
the \n removed; for example, a buf byte string of “PUB abc\r 10\n” will result in an arg
value of “abc\r 1”, rather than “abc\r 10”.

Finally, in the case of a split buffer, the c.drop variable is used to determine how many
trailing characters to remove (see line 1164 in figure 5.2). This means that a byte string of
“PUB a\rbc 123\n” may result in an arg variable of “a\rbc 12”, “a\rbc123”, “a\rb
123”, “a\rc 123”, or “abc 123”, depending on how it is split.

 409 case PUB_ARG:
 410 ​ switch b {
 411 ​ case '\r':
 412 ​ ​ c.drop = 1
 413 ​ case '\n':
 414 ​ ​ var arg []byte
 415 ​ ​ if c.argBuf != nil {
 416 ​ ​ ​ arg = c.argBuf
 417 ​ ​ ​ c.argBuf = nil
 418 ​ ​ } else {
 419 ​ ​ ​ arg = buf[c.as : i-c.drop]

​
 Trail of Bits​ 39​ NATS Server​
 PUBLIC​ ​ Security Assessment

 420 ​ ​ }
 ​ ​ // ...
 431 ​ ​ c.drop, c.as, c.state = 0, i+1, MSG_PAYLOAD
 ​ ​ // ...
 438 ​ default:
 439 ​ ​ if c.argBuf != nil {
 440 ​ ​ ​ c.argBuf = append(c.argBuf, b)
 441 ​ ​ }
 442 ​ }

Figure 5.1: Code for parsing arguments to PUB command
(nats-server/server/parser.go#409–442)

 1154 // Check for split buffer scenarios for any ARG state.
 1155 if c.state == SUB_ARG || c.state == UNSUB_ARG ||
 1156 ​ c.state == PUB_ARG || c.state == HPUB_ARG ||
 1157 ​ c.state == ASUB_ARG || c.state == AUSUB_ARG ||
 1158 ​ c.state == MSG_ARG || c.state == HMSG_ARG ||
 1159 ​ c.state == MINUS_ERR_ARG || c.state == CONNECT_ARG || c.state ==
INFO_ARG {
 1160
 1161 ​ // Setup a holder buffer to deal with split buffer scenario.
 1162 ​ if c.argBuf == nil {
 1163 ​ ​ c.argBuf = c.scratch[:0]
 1164 ​ ​ c.argBuf = append(c.argBuf, buf[c.as:i-c.drop]...)
 1165 ​ }
 1166 ​ // Check for violations of control line length here. Note that this is
not
 1167 ​ // exact at all but the performance hit is too great to be precise, and
 1168 ​ // catching here should prevent memory exhaustion attacks.
 1169 ​ if err := c.overMaxControlLineLimit(c.argBuf, mcl); err != nil {
 1170 ​ ​ return err
 1171 ​ }
 1172 }

Figure 5.2: Code for handling split buffers (nats-server/server/parser.go#1154–1172)

Exploit Scenario
An authenticated attacker sends a “PUB abc\r 0\r\n\r\n” command to a NATS Server
that has pedantic mode disabled, causing an empty message to be published to the
“abc\r” topic. This causes “MSG abc\r 0\r\n\r\n” messages to be propagated
throughout the NATS Cluster. This typically does not cause any issues, but when a message
gets split up as “MSG abc\r 0” “\r\n\r\n”, a parse error occurs, followed by a dropped
connection. In this way, the attacker can cause connections to be dropped between nodes
that he otherwise should have no control over.

Recommendations
Short term, add checks to the parser that throw an error if drop is set to 1 and a character
other than \n is encountered.

​
 Trail of Bits​ 40​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/server/parser.go#L409-L442
https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/server/parser.go#L1154-L1172

Long term, modify NATS’s parser fuzz test so that it also checks that byte strings are parsed
identically regardless of how they are split. A sample fuzz test that does this is provided in
appendix E.

​
 Trail of Bits​ 41​ NATS Server​
 PUBLIC​ ​ Security Assessment

6. Use of unpinned third-party workflow

Severity: Medium Difficulty: High

Type: Patching Finding ID: TOB-NATS-6

Target: nats-server/.github/actions/nightly-release/action.yaml,
nats-server/.github/workflows/cov.yaml

Description
Some of NATS’s GitHub Actions workflows use third-party dependencies whose versions
are selected by Git tag rather than commit hash (see figures 6.1 and 6.2). Git tags are
malleable. This means that, for example, while jandelgado/gcov2lcov-action is pinned
to v1.0.9, the upstream may silently change the reference pointed to by v1.0.9. This can
include malicious re-tags, in which case NATS’s workflow will silently update to use the
malicious workflow as a dependency.

GitHub’s security hardening guidelines for third-party actions encourages developers to pin
third-party actions to a full-length commit hash. Generally excluded from this are “official”
actions under the actions organization.

- name: goreleaser
 uses: goreleaser/goreleaser-action@v5
 with:
 workdir: "${{ inputs.workdir }}"
 version: latest
 args: release --snapshot --config .goreleaser-nightly.yml

Figure 6.1: nats-server/.github/actions/nightly-release/action.yaml#33–38

- name: Convert coverage.out to coverage.lcov
 uses: jandelgado/gcov2lcov-action@v1.0.9
 with:
 infile: acc.out
 working-directory: src/github.com/nats-io/nats-server

- name: Coveralls
 uses: coverallsapp/github-action@v2
 with:
 github-token: ${{ secrets.github_token }}
 file: src/github.com/nats-io/nats-server/coverage.lcov

Figure 6.2: nats-server/.github/workflows/cov.yaml#35–45

​
 Trail of Bits​ 42​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/.github/actions/nightly-release/action.yaml#L33-L38
https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/.github/workflows/cov.yaml#L35-L45

Exploit Scenario
An attacker (or compromised maintainer) silently overwrites the v1.0.9 tag on
jandelgado/gcov2lcov-action with a malicious version of the action, allowing the
GitHub token for the nats-server repository to be stolen.

An attacker (or compromised maintainer) silently overwrites the v5 tag on
goreleaser/goreleaser-action with a malicious version of the action, allowing both
the GitHub token for the nats-server repository and the NATS team’s username and
password for Dockerhub to be stolen.

Recommendations
Short term, replace the current version tags with full-length commit hashes corresponding
to the revision that each workflow is intended to use.

Long term, use Semgrep static analysis on the codebase regularly; the
yaml.github-actions.security.third-party-action-not-pinned-to-commit-s
ha.third-party-action-not-pinned-to-commit-sha rule would have found this
problem. Appendix F contains instructions on how to perform static analysis on the
codebase using Semgrep.

​
 Trail of Bits​ 43​ NATS Server​
 PUBLIC​ ​ Security Assessment

7. Use of non-TLS download in Travis CI configuration file

Severity: Informational Difficulty: High

Type: Configuration Finding ID: TOB-NATS-7

Target: nats-server/.travis.yml

Description
The configuration file for Travis CI files runs the GoReleaser installation script downloaded
from an http link rather than an https link (see figure 7.1). This means that a
machine-in-the-middle attacker may be able to provide a malicious version of the script
that steals tokens or release a malicious version of the NATS Server.

deploy:
 provider: script
 cleanup: true
 script: curl -sL http://git.io/goreleaser | bash
 on:
 tags: true
 condition: ($TRAVIS_GO_VERSION =~ 1.21) && ($TEST_SUITE = "compile")

Figure 7.1: nats-server/.travis.yml#49–55

Recommendations
Short term, switch to GoReleaser’s up-to-date recommended installation instructions. The
highlighted text in figure 7.1 should be changed to curl -sfL
https://goreleaser.com/static/run | bash. Ensure Cosign is installed in the CI
environment to allow the script to check the release signatures.

Long term, use Semgrep static analysis on the codebase regularly; the
trailofbits.generic.curl-unencrypted-url.curl-unencrypted-url rule would
have found this problem. Appendix F contains instructions on how to perform static
analysis on the codebase using Semgrep.

Consider manually installing a known version of GoReleaser with a known hash to reduce
the risk of CI tampering due to a third-party script compromise.

​
 Trail of Bits​ 44​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/.travis.yml#L49-L55
https://goreleaser.com/install/#bash-script
https://docs.sigstore.dev/system_config/installation/

8. Missing mutex unlocks before return statements

Severity: Informational Difficulty: High

Type: Timing Finding ID: TOB-NATS-8

Target: nats-server/server/stream.go, nats-server/server/filestore.go

Description
Multiple functions in the NATS codebase lock a mutex but do not unlock the mutex before
returning in the case of an error. This could lead to a deadlock.

Instances of this bug are shown in figures 8.1 through 8.3. In each figure, the line
highlighted and marked with (1) shows the mutex lock, and the line(s) highlighted and
marked with (2) show the return statement(s) that do not unlock the mutex.

// swapSigSubs will update signal Subs for a new subject filter.
// consumer lock should not be held.
func (mset *stream) swapSigSubs(o *consumer, newFilters []string) {
​ mset.clsMu.Lock() // (1)
​ o.mu.Lock()

​ if o.closed || o.mset == nil {
​ ​ o.mu.Unlock()
​ ​ return // (2)
​ }

Figure 8.1: nats-server/server/stream.go#5280–5289

// Truncate this message block to the storedMsg.
func (mb *msgBlock) truncate(sm *StoreMsg) (nmsgs, nbytes uint64, err error) {​

​ // ...

​ mb.mu.Lock() // (1)

​ // ...

​ // If the block is compressed then we have to load it into memory
​ // and decompress it, truncate it and then write it back out.
​ // Otherwise, truncate the file itself and close the descriptor.
​ if mb.cmp != NoCompression {
​ ​ buf, err := mb.loadBlock(nil)
​ ​ if err != nil {
​ ​ ​ return 0, 0, fmt.Errorf("failed to load block from disk: %w",

​
 Trail of Bits​ 45​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/server/stream.go#L5280-L5289

err) // (2)
​ ​ }
​ ​ if mb.bek != nil && len(buf) > 0 {
​ ​ ​ bek, err := genBlockEncryptionKey(mb.fs.fcfg.Cipher, mb.seed,
mb.nonce)
​ ​ ​ if err != nil {
​ ​ ​ ​ return 0, 0, err // (2)
​ ​ ​ }
​ ​ ​ mb.bek = bek
​ ​ ​ mb.bek.XORKeyStream(buf, buf)
​ ​ }
​ ​ buf, err = mb.decompressIfNeeded(buf)
​ ​ if err != nil {
​ ​ ​ return 0, 0, fmt.Errorf("failed to decompress block: %w", err)
// (2)
​ ​ }
​ ​ buf = buf[:eof]
​ ​ copy(mb.lchk[0:], buf[:len(buf)-checksumSize])
​ ​ buf, err = mb.cmp.Compress(buf)
​ ​ if err != nil {
​ ​ ​ return 0, 0, fmt.Errorf("failed to recompress block: %w", err)
// (2)
​ ​ }
​ ​ meta := &CompressionInfo{
​ ​ ​ Algorithm: mb.cmp,
​ ​ ​ OriginalSize: uint64(eof),
​ ​ }
​ ​ buf = append(meta.MarshalMetadata(), buf...)
​ ​ if mb.bek != nil && len(buf) > 0 {
​ ​ ​ bek, err := genBlockEncryptionKey(mb.fs.fcfg.Cipher, mb.seed,
mb.nonce)
​ ​ ​ if err != nil {
​ ​ ​ ​ return 0, 0, err // (2)
​ ​ ​ }
​ ​ ​ mb.bek = bek
​ ​ ​ mb.bek.XORKeyStream(buf, buf)
​ ​ }
​ ​ n, err := mb.writeAt(buf, 0)
​ ​ if err != nil {
​ ​ ​ return 0, 0, fmt.Errorf("failed to rewrite compressed block:
%w", err) // (2)
​ ​ }
​ ​ if n != len(buf) {
​ ​ ​ return 0, 0, fmt.Errorf("short write (%d != %d)", n, len(buf))
// (2)
​ ​ }
​ ​ mb.mfd.Truncate(int64(len(buf)))
​ ​ mb.mfd.Sync()
​ } else if mb.mfd != nil {
​ ​ mb.mfd.Truncate(eof)
​ ​ mb.mfd.Sync()
​ ​ // Update our checksum.
​ ​ var lchk [8]byte

​
 Trail of Bits​ 46​ NATS Server​
 PUBLIC​ ​ Security Assessment

​ ​ mb.mfd.ReadAt(lchk[:], eof-8)
​ ​ copy(mb.lchk[0:], lchk[:])
​ } else {
​ ​ mb.mu.Unlock()
​ ​ return 0, 0, fmt.Errorf("failed to truncate msg block %d, file not
open", mb.index)
​ }

Figure 8.2: nats-server/server/filestore.go#4170–4279

// Truncate will truncate a stream store up to seq. Sequence needs to be valid.
func (fs *fileStore) Truncate(seq uint64) error {
​ // Check for request to reset.
​ if seq == 0 {
​ ​ return fs.reset()
​ }

​ fs.mu.Lock() // (1)

​ if fs.closed {
​ ​ fs.mu.Unlock()
​ ​ return ErrStoreClosed
​ }
​ if fs.sips > 0 {
​ ​ fs.mu.Unlock()
​ ​ return ErrStoreSnapshotInProgress
​ }

​ nlmb := fs.selectMsgBlock(seq)
​ if nlmb == nil {
​ ​ fs.mu.Unlock()
​ ​ return ErrInvalidSequence
​ }
​ lsm, _, _ := nlmb.fetchMsg(seq, nil)
​ if lsm == nil {
​ ​ fs.mu.Unlock()
​ ​ return ErrInvalidSequence
​ }

​ // Set lmb to nlmb and make sure writeable.
​ fs.lmb = nlmb
​ if err := nlmb.enableForWriting(fs.fip); err != nil {
​ ​ return err // (2)
​ }

Figure 8.3: nats-server/server/filestore.go#6874–6907

Recommendations
Short term, add calls to the Unlock() method before each of these return statements. If it
is possible, use a defer mutex.Unlock() statement immediately after the Lock()

​
 Trail of Bits​ 47​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/server/filestore.go#L4170-L4279
https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/server/filestore.go#L6874-L6907

method is called instead so that the mutex will be unlocked regardless of the code path
taken.

Long term, use Semgrep static analysis on the codebase regularly; the
trailofbits.go.missing-unlock-before-return.missing-unlock-before-retu
rn rule would have found this problem. Appendix F contains instructions on how to
perform static analysis on the codebase using Semgrep.

​
 Trail of Bits​ 48​ NATS Server​
 PUBLIC​ ​ Security Assessment

9. Windows DLL loading susceptible to DLL hijacking attacks

Severity: Informational Difficulty: High

Type: Configuration Finding ID: TOB-NATS-9

Target: nats-server/server/certstore/certstore_windows.go,
nats-server/server/pse/pse_windows.go,
nats-server/server/sysmem/mem_windows.go

Description
NATS uses DLL loading functions, which are susceptible to DLL hijacking attacks (see figures
9.1 through 9.3). An attacker may be able to cause malicious code to execute by creating a
DLL in the same directory as the NATS executable or in the current working directory from
which NATS is being run. In the former case, the DLL in the same directory as the NATS
executable would have precedence over the Windows system DLL. In the latter case, the
DLL in the current working directory would have lower precedence than the Windows
system DLL and would be used only if the system DLL were not found.

If NATS is being run with elevated privileges, the DLL hijacking attack could additionally
allow the attacker to perform a local privilege escalation.

// These DLLs must be available on all Windows hosts
winCrypt32 = windows.MustLoadDLL("crypt32.dll")
winNCrypt = windows.MustLoadDLL("ncrypt.dll")

Figure 9.1: nats-server/server/certstore/certstore_windows.go#117–119

var (
​ pdh = syscall.NewLazyDLL("pdh.dll")

Figure 9.2: nats-server/server/pse/pse_windows.go#30–31

func Memory() int64 {
​ kernel32, err := syscall.LoadDLL("kernel32.dll")

Figure 9.3: nats-server/server/sysmem/mem_windows.go#32–33

Recommendations
Short term, replace these DLL loading functions with calls to the
windows.NewLazySystemDLL function, which only searches for system DLLs.

Long term, use Semgrep static analysis on the codebase regularly; the
trailofbits.go.unsafe-dll-loading.unsafe-dll-loading rule would have found
this problem. Appendix F contains instructions on how to perform static analysis on the
codebase using Semgrep.
​
 Trail of Bits​ 49​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/server/certstore/certstore_windows.go#L117-L119
https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/server/pse/pse_windows.go#L30-L31
https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/server/sysmem/mem_windows.go#L32-L33

10. HTTP servers are vulnerable to Slowloris denial-of-service attacks

Severity: Low Difficulty: High

Type: Denial of Service Finding ID: TOB-NATS-10

Target: nats-server/server/server.go

Description
The NATS HTTP Servers for profiling and monitoring are vulnerable to Slowloris
denial-of-service attacks. This attack takes advantage of Servers that keep connections alive
for incomplete requests without defining any timeout. By flooding the Server with
incomplete requests, the attacker can cause an out-of-memory error or can fill up the
connection pool, causing real requests to be denied.

srv := &http.Server{
​ Addr: hp,
​ Handler: http.DefaultServeMux,
​ MaxHeaderBytes: 1 << 20,
}

Figure 10.1: Server without timeout used for profiling
(nats-server/server/server.go#2750–2754)

srv := &http.Server{
​ Addr: hp,
​ Handler: mux,
​ MaxHeaderBytes: 1 << 20,
​ ErrorLog: log.New(&captureHTTPServerLog{s, "monitoring: "}, _EMPTY_,
0),
}

Figure 10.2: Server without timeout used for monitoring
(nats-server/server/server.go#2949–2954)

Recommendations
Short term, use the ReadTimeout parameter on the http.Server struct to set a request
timeout. Alternatively, use the ReadHeaderTimeout parameter on the http.Server
struct to set a timeout on requests’ headers and manually add timeouts at each code
location in which the request body is read.

Long term, use Semgrep static analysis on the codebase regularly; the
go.net.dos.slowloris-dos.slowloris-dos rule would have found this problem.
Appendix F contains instructions on how to perform static analysis on the codebase using
Semgrep.

​
 Trail of Bits​ 50​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/server/server.go#L2750-L2754
https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/server/server.go#L2949-L2954

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

​
 Trail of Bits​ 51​ NATS Server​
 PUBLIC​ ​ Security Assessment

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

​
 Trail of Bits​ 52​ NATS Server​
 PUBLIC​ ​ Security Assessment

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Configuration The configuration of system components in accordance with best
practices

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Data Handling The safe handling of user inputs and data processed by the system

Documentation The presence of comprehensive and readable codebase documentation

Maintenance The timely maintenance of system components to mitigate risk

Memory Safety
and Error Handling

The presence of memory safety and robust error-handling mechanisms

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

​
 Trail of Bits​ 53​ NATS Server​
 PUBLIC​ ​ Security Assessment

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

​
 Trail of Bits​ 54​ NATS Server​
 PUBLIC​ ​ Security Assessment

C. Code Quality Recommendations

This appendix contains findings that do not have immediate or obvious security
implications or that were discovered but not fully investigated due to time constraints or
scope limitations.

●​ Break up long functions, such as processClientOrLeafAuthentication() at
server/auth.go:575-1060: Several security-relevant code paths involve long,
multihundred-line functions handling numerous distinct functionalities (e.g.,
authentication methods). While they are not necessarily vulnerable in their own
right, they are difficult to comprehensively audit and understand due to their
complexity, which makes it more likely that logic-related security issues will be
unintentionally introduced by future modifications and less likely that they will be
discovered.

●​ Replace c.pa.size - LEN_CR_LF with c.pa.size - 2 in server/parser.go.
The statement i = c.as + c.pa.size - LEN_CR_LF is used in multiple locations in
server/parser.go in order to jump to the last character of a message payload.
The c.as variable represents the first character of the message payload, and the
c.pa.size variable represents the length of the message payload. The c.pa.size
variable does not include the added length from the trailing CRLF characters that
occur after the message payload, but the use of c.pa.size - LEN_CR_LF implies
that c.pa.size does include the CRLF characters. The reason the statement works
correctly is that c.as + c.pa.size represents the character after the end of the
message payload, c.as + c.pa.size - 1 represents the character at the end of the
message payload, c.as + c.pa.size - 2 takes off one more character to account
for the i++ statement in the parser’s for loop, and c.as + c.pa.size -
LEN_CR_LF equals c.as + c.pa.size - 2 (since CRLF is two characters long). The
use of the LEN_CR_LF constant in this context can mislead developers as to how the
code functions and can make code maintenance more difficult.

case PUB_ARG:
​ switch b {
​ case '\r':
​ ​ c.drop = 1
​ case '\n':
​ ​ var arg []byte
​ ​ if c.argBuf != nil {
​ ​ ​ arg = c.argBuf
​ ​ ​ c.argBuf = nil
​ ​ } else {
​ ​ ​ arg = buf[c.as : i-c.drop]
​ ​ }
​ ​ if err := c.overMaxControlLineLimit(arg, mcl); err != nil {
​ ​ ​ return err

​
 Trail of Bits​ 55​ NATS Server​
 PUBLIC​ ​ Security Assessment

​ ​ }
​ ​ if trace {
​ ​ ​ c.traceInOp("PUB", arg)
​ ​ }
​ ​ if err := c.processPub(arg); err != nil {
​ ​ ​ return err
​ ​ }

​ ​ c.drop, c.as, c.state = 0, i+1, MSG_PAYLOAD
​ ​ // If we don't have a saved buffer then jump ahead with
​ ​ // the index. If this overruns what is left we fall out
​ ​ // and process split buffer.
​ ​ if c.msgBuf == nil {
​ ​ ​ i = c.as + c.pa.size - LEN_CR_LF
​ ​ }
​ default:
​ ​ if c.argBuf != nil {
​ ​ ​ c.argBuf = append(c.argBuf, b)
​ ​ }
​ }

Figure C.1: Example of misleading usage of LEN_CR_LF constant in the parser
(nats-server/server/parser.go#409–442)

​
 Trail of Bits​ 56​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://github.com/nats-io/nats-server/blob/121169ea86756a853a418446b9c7591df761b49d/server/parser.go#L409-L442

D. Instances of Unchecked Type Assertions

The following is a list of all instances of unchecked type assertions in the NATS codebase.
Unchecked type assertions can lead to panics if the real and expected types differ.

●​ server/auth.go:320
●​ server/auth.go:335
●​ server/auth_callout.go:369
●​ server/dirstore.go:363
●​ server/dirstore.go:423
●​ server/dirstore.go:433
●​ server/dirstore.go:603
●​ server/dirstore.go:623
●​ server/dirstore.go:637
●​ server/dirstore.go:638
●​ server/dirstore.go:661
●​ server/events.go:373
●​ server/events.go:908
●​ server/events.go:1330
●​ server/events.go:1420
●​ server/events.go:1432
●​ server/events.go:1437
●​ server/events.go:1480
●​ server/events.go:1634
●​ server/events.go:1670
●​ server/events.go:1958
●​ server/gateway.go:499
●​ server/gateway.go:526
●​ server/gateway.go:865
●​ server/gateway.go:1158
●​ server/gateway.go:1775
●​ server/gateway.go:1790
●​ server/gateway.go:1818
●​ server/gateway.go:1875
●​ server/gateway.go:1985
●​ server/gateway.go:2078
●​ server/gateway.go:2357
●​ server/gateway.go:2364
●​ server/gateway.go:2413
●​ server/gateway.go:2471
●​ server/gateway.go:2769
●​ server/gateway.go:2773
●​ server/gateway.go:2777

​
 Trail of Bits​ 57​ NATS Server​
 PUBLIC​ ​ Security Assessment

●​ server/gateway.go:3034
●​ server/gateway.go:3061
●​ server/gateway.go:3225
●​ server/gateway.go:3226
●​ server/ipqueue.go:79
●​ server/jetstream.go:768
●​ server/jetstream.go:847
●​ server/jetstream_errors.go:87
●​ server/leafnode.go:703
●​ server/leafnode.go:728
●​ server/leafnode.go:1587
●​ server/leafnode.go:1972
●​ server/monitor.go:851
●​ server/monitor.go:997
●​ server/monitor.go:1038
●​ server/monitor.go:1138
●​ server/monitor.go:1718
●​ server/monitor.go:2010
●​ server/monitor.go:2025
●​ server/monitor.go:2289
●​ server/monitor.go:2300
●​ server/monitor.go:2539
●​ server/monitor.go:2584
●​ server/mqtt.go:496
●​ server/mqtt.go:620
●​ server/mqtt.go:995
●​ server/mqtt.go:1657
●​ server/mqtt.go:1671
●​ server/mqtt.go:1681
●​ server/mqtt.go:1694
●​ server/mqtt.go:1707
●​ server/mqtt.go:1716
●​ server/mqtt.go:1725
●​ server/mqtt.go:1739
●​ server/mqtt.go:1761
●​ server/mqtt.go:1777
●​ server/mqtt.go:1791
●​ server/mqtt.go:1804
●​ server/mqtt.go:1818
●​ server/mqtt.go:1842
●​ server/mqtt.go:1871
●​ server/mqtt.go:2116
●​ server/mqtt.go:2874
●​ server/mqtt.go:2978

​
 Trail of Bits​ 58​ NATS Server​
 PUBLIC​ ​ Security Assessment

●​ server/raft.go:533
●​ server/raft.go:541
●​ server/raft.go:593
●​ server/raft.go:1429
●​ server/raft.go:1444
●​ server/raft.go:1988
●​ server/raft.go:2018
●​ server/raft.go:2046
●​ server/raft.go:2194
●​ server/raft.go:2228
●​ server/raft.go:2238
●​ server/reload.go:1219
●​ server/reload.go:1229
●​ server/reload.go:1231
●​ server/reload.go:1233
●​ server/reload.go:1235
●​ server/reload.go:1237
●​ server/reload.go:1239
●​ server/reload.go:1241
●​ server/reload.go:1243
●​ server/reload.go:1245
●​ server/reload.go:1247
●​ server/reload.go:1249
●​ server/reload.go:1251
●​ server/reload.go:1253
●​ server/reload.go:1263
●​ server/reload.go:1269
●​ server/reload.go:1270
●​ server/reload.go:1300
●​ server/reload.go:1302
●​ server/reload.go:1304
●​ server/reload.go:1304
●​ server/reload.go:1306
●​ server/reload.go:1308
●​ server/reload.go:1310
●​ server/reload.go:1312
●​ server/reload.go:1314
●​ server/reload.go:1316
●​ server/reload.go:1341
●​ server/reload.go:1342
●​ server/reload.go:1362
●​ server/reload.go:1363
●​ server/reload.go:1494
●​ server/reload.go:1495

​
 Trail of Bits​ 59​ NATS Server​
 PUBLIC​ ​ Security Assessment

●​ server/reload.go:1503
●​ server/reload.go:1504
●​ server/reload.go:1518
●​ server/reload.go:1519
●​ server/reload.go:1552
●​ server/reload.go:1553
●​ server/reload.go:1563
●​ server/reload.go:1564
●​ server/reload.go:1565
●​ server/reload.go:1566
●​ server/reload.go:1567
●​ server/reload.go:1568
●​ server/reload.go:1572
●​ server/reload.go:1573
●​ server/reload.go:1584
●​ server/reload.go:1585
●​ server/reload.go:1586
●​ server/reload.go:1587
●​ server/reload.go:1588
●​ server/reload.go:1589
●​ server/reload.go:1591
●​ server/reload.go:1593
●​ server/reload.go:1599
●​ server/reload.go:1602
●​ server/reload.go:1628
●​ server/reload.go:1630
●​ server/reload.go:1632
●​ server/reload.go:1633
●​ server/reload.go:1724
●​ server/reload.go:1731
●​ server/reload.go:1907
●​ server/reload.go:1959
●​ server/reload.go:2155
●​ server/reload.go:2244
●​ server/reload.go:2370
●​ server/reload.go:2381
●​ server/route.go:150
●​ server/route.go:808
●​ server/route.go:946
●​ server/route.go:1192
●​ server/route.go:1274
●​ server/route.go:1386
●​ server/route.go:1586
●​ server/route.go:1595

​
 Trail of Bits​ 60​ NATS Server​
 PUBLIC​ ​ Security Assessment

●​ server/route.go:1831
●​ server/route.go:2458
●​ server/route.go:2507
●​ server/sendq.go:108
●​ server/server.go:1091
●​ server/server.go:1184
●​ server/server.go:1192
●​ server/server.go:1205
●​ server/server.go:1214
●​ server/server.go:1219
●​ server/server.go:1380
●​ server/server.go:1406
●​ server/server.go:1408
●​ server/server.go:1580
●​ server/server.go:1605
●​ server/server.go:1726
●​ server/server.go:1804
●​ server/server.go:1912
●​ server/server.go:2224
●​ server/server.go:2284
●​ server/server.go:2607
●​ server/server.go:2621
●​ server/server.go:2748
●​ server/server.go:2912
●​ server/server.go:3262
●​ server/server.go:3537
●​ server/server.go:3593
●​ server/server.go:3603
●​ server/server.go:3613
●​ server/server.go:3860
●​ server/server.go:4374
●​ server/stree/dump.go:35
●​ server/stree/stree.go:66
●​ server/stree/stree.go:129
●​ server/stree/stree.go:212
●​ server/stree/stree.go:234
●​ server/stree/stree.go:244
●​ server/stree/stree.go:282
●​ server/stree/stree.go:311
●​ server/stree/stree.go:356
●​ server/websocket.go:402
●​ server/websocket.go:406
●​ server/websocket.go:748
●​ server/websocket.go:1098

​
 Trail of Bits​ 61​ NATS Server​
 PUBLIC​ ​ Security Assessment

E. Automated Testing Artifacts

This appendix contains information about tooling used in our automated testing
campaigns.

Fuzzing Inconsistent Behavior from TOB-NATS-5
We used the built-in Go fuzzer to find extra example cases of inconsistent behavior
described in TOB-NATS-5. The harness provided in figure E.3 can be added to
parser_test.go and run as follows to discover new instances of differing behavior when
the buffer being parsed is split differently.

go test -run FuzzSplit -fuzz FuzzSplit github.com/nats-io/nats-server/v2/server -v

Figure E.1: The command to run the harness in figure E.3

The test case seeds were collected from other tests in the file. The harness is able to find an
example of inconsistent behavior in about a minute when run on a 2021 MacBook Pro.
Note that this harness only lightly verifies that buffers that parse successfully as a whole
can be processed in a split manner, but it does not check whether two pieces of buffer that
parse correctly in succession can also be parsed in one go. It also does not check that the
results from parsing are equivalent in both cases.

% go test -run FuzzSplit -fuzz FuzzSplit github.com/nats-io/nats-server/v2/server -v
=== RUN FuzzSplit
fuzz: elapsed: 0s, gathering baseline coverage: 0/325 completed
fuzz: elapsed: 1s, gathering baseline coverage: 325/325 completed, now fuzzing with
10 workers
fuzz: elapsed: 3s, execs: 20184 (6726/sec), new interesting: 6 (total: 331)
// (...)
fuzz: elapsed: 33s, execs: 107827 (1577/sec), new interesting: 36 (total: 361)
fuzz: minimizing 45-byte failing input file
fuzz: elapsed: 36s, minimizing
--- FAIL: FuzzSplit (35.98s)
 --- FAIL: FuzzSplit (0.00s)
 parser_test.go:275: Second split failed with i 7 ["PUB 0\r "] ["00\n"]

 Failing input written to testdata/fuzz/FuzzSplit/5e2dcc3924dda852
 To re-run:
 go test -run=FuzzSplit/5e2dcc3924dda852
=== NAME
FAIL
exit status 1
FAIL github.com/nats-io/nats-server/v2/server 36.953s

Figure E.2: Fuzz results obtained from running the command in figure E.1

​
 Trail of Bits​ 62​ NATS Server​
 PUBLIC​ ​ Security Assessment

func FuzzSplit(f *testing.F) {
​ testcases := [][]byte{
​ ​ []byte("PING\r\n"),
​ ​ []byte("PING \r"),
​ ​ []byte("PING \r \n"),
​ ​ []byte("PONG\r\n"),
​ ​ []byte("PONG \r"),
​ ​ []byte("PONG \r \n"),
​ ​ []byte("PONG\r\n"),
​ ​ []byte("CONNECT
{\"verbose\":false,\"pedantic\":true,\"tls_required\":false}\r\n"),
​ ​ []byte("SUB foo 1\r"),
​ ​ []byte("PUB foo 5\r\nhello\r"),
​ ​ []byte("PUB foo.bar INBOX.22 11\r\nhello world\r"),
​ ​ []byte("PUB foo.bar 11\r\nhello world hello world\r"),
​ ​ []byte("PUB foo
33\r\n"),
​ ​ []byte("HPUB foo 12 17\r\nname:derek\r\nHELLO\r"),
​ ​ []byte("HPUB foo INBOX.22 12 17\r\nname:derek\r\nHELLO\r"),
​ ​ []byte("HPUB foo INBOX.22 0 5\r\nHELLO\r"),
​ ​ []byte("HMSG $foo foo 10 8\r\nXXXhello\r"),
​ ​ []byte("HMSG $foo foo 3 8\r\nXXXhello\r"),
​ ​ []byte("HMSG $G foo.bar INBOX.22 3 14\r\nOK:hello world\r"),
​ ​ []byte("HMSG $G foo.bar + reply baz 3 14\r\nOK:hello world\r"),
​ ​ []byte("HMSG $G foo.bar | baz 3 14\r\nOK:hello world\r"),
​ ​ []byte("MSG $foo foo 5\r\nhello\r"),
​ ​ []byte("RMSG $foo foo 5\r\nhello\r"),
​ ​ []byte("RMSG $G foo.bar INBOX.22 11\r\nhello world\r"),
​ ​ []byte("RMSG $G foo.bar + reply baz 11\r\nhello world\r"),
​ ​ []byte("RMSG $G foo.bar | baz 11\r\nhello world\r"),
​ ​ []byte("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"),
​ ​ []byte("+OK\r\n"),
​ ​ []byte("PUB foo.bar.baz 2\r\nok\r\n"),
​ }
​ for _, tc := range testcases {
​ ​ f.Add(tc)
​ }

​ f.Fuzz(func(t *testing.T, buffer []byte) {
​ ​ c := dummyClient()
​ ​ err := c.parse(buffer)
​ ​ if err != nil {
​ ​ ​ return
​ ​ }
​ ​ for i, _ := range buffer {
​ ​ ​ c := dummyClient()

​
 Trail of Bits​ 63​ NATS Server​
 PUBLIC​ ​ Security Assessment

​ ​ ​ err = c.parse(buffer[:i])
​ ​ ​ if err != nil {
​ ​ ​ ​ t.Fatalf("First split failed with i %v [%q] [%q]", i,
string(buffer[:i]), string(buffer[i:]))
​ ​ ​ }
​ ​ ​ err = c.parse(buffer[i:])
​ ​ ​ if err != nil {
​ ​ ​ ​ t.Fatalf("Second split failed with i %v [%q] [%q]", i,
string(buffer[:i]), string(buffer[i:]))
​ ​ ​ }
​ ​ }
​ })
}

Figure E.3: A fuzzing harness that tests that buffers that can be parsed correctly as a whole also
get processed successfully when split in two parts

This difference in behavior can also be observed by running the found case against a live
NATS Server; for example, if localhost:4222 were a NATS Server, the following two
commands would elicit a different response from the Server:

% (echo -en "PUB 0\r "; sleep 1; echo -en "00\n"; sleep 1) | nc localhost 4222
% (echo -en "PUB 0\r 00\n"; sleep 1) | nc localhost 4222

Figure E.4: Two commands that send the same string to a Server in localhost:4222, but the
first one does it in two parts, while the second one does it all in one go

% docker run --rm --name nats-main -p 4222:4222 -p 6222:6222 -p 8222:8222 nats -D
(...)
Response logs from NATS for the first command
[1] 2024/03/31 20:21:43.003748 [DBG] 192.168.65.1:33467 - cid:8 - Client connection
created
[1] 2024/03/31 20:21:44.000094 [ERR] 192.168.65.1:33467 - cid:8 - processPub Parse
Error: "0\r00"
[1] 2024/03/31 20:21:44.003362 [DBG] 192.168.65.1:33467 - cid:8 - Client connection
closed: Protocol Violation

Response logs from NATS for the second command
[1] 2024/03/31 20:21:55.630639 [DBG] 192.168.65.1:33468 - cid:9 - Client connection
created
[1] 2024/03/31 20:21:56.624102 [DBG] 192.168.65.1:33468 - cid:9 - Client connection
closed: Client Closed

Figure E.5: Output from the NATS Server when running the examples in figure E.4

​
 Trail of Bits​ 64​ NATS Server​
 PUBLIC​ ​ Security Assessment

F. Automated Static Analysis

This appendix describes the setup of the automated analysis tools used during this audit.

Though static analysis tools frequently report false positives, they detect certain categories
of issues, such as memory leaks, misspecified format strings, and the use of unsafe APIs,
with essentially perfect precision. We recommend periodically running these static analysis
tools and reviewing their findings.

Semgrep
To install Semgrep, we used pip by running python3 -m pip install semgrep.

To run Semgrep on the codebase, we ran the following commands in the root directory of
the project:

semgrep --config "r/all" --metrics=off

We recommend integrating Semgrep into the project’s CI/CD pipeline. To thoroughly
understand the Semgrep tool, refer to the Trail of Bits Testing Handbook, which offers
guidance on streamlining the use of Semgrep and improving security testing effectiveness.
Also, consider doing the following:

●​ Limit results to error severity only by using the --severity ERROR flag.

●​ Focus first on rules with high confidence and medium- or high-impact metadata.

●​ Use the SARIF format (by using the --sarif Semgrep argument) with the SARIF
Explorer for Visual Studio Code extension. This will make it easier to review the
analysis results and drill down into specific issues to understand their impact and
severity.

CodeQL
We installed CodeQL by following CodeQL’s installation guide.

After installing CodeQL, we ran the following command to create the project database for
the NATS Server repository:

​ codeql database create nats.db --language=go

We then ran the following command to query the database:

codeql database analyze nats.db --format=sarif-latest
--output=codeql_res.sarif -- go-lgtm-full go-security-and-quality
go-security-experimental

​
 Trail of Bits​ 65​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://appsec.guide/docs/static-analysis/semgrep/
https://blog.trailofbits.com/2024/03/20/streamline-the-static-analysis-triage-process-with-sarif-explorer/
https://blog.trailofbits.com/2024/03/20/streamline-the-static-analysis-triage-process-with-sarif-explorer/
https://codeql.github.com/docs/codeql-cli/getting-started-with-the-codeql-cli/

The resulting SARIF file can be reviewed with the SARIF Explorer extension as well. To
understand CodeQL more thoroughly, we recommend reviewing the CodeQL chapter in the
Testing Handbook.

actionlint
We installed actionlint by following actionlint’s quick start guide. We also installed its two
external dependencies, shellcheck and pyflakes, using their corresponding installation
guides.

After installing actionlint, we ran the following command to analyze the repository:

​ actionlint

​
 Trail of Bits​ 66​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://appsec.guide/docs/static-analysis/codeql/
https://github.com/rhysd/actionlint#quick-start
https://github.com/koalaman/shellcheck#installing
https://pypi.org/project/pyflakes/

D. Fix Review Results

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

On February 18, 2024, Trail of Bits reviewed the fixes and mitigations implemented by
Synadia Communications for the issues identified in this report. We reviewed each fix to
determine its effectiveness in resolving the associated issue.

On April 17, 2025, Trail of Bits reviewed an additional fix for issue TOB-NATS-4.

In summary, of the 10 issues described in this report, Synadia Communications has
resolved nine issues and has not resolved the remaining issue. For additional information,
please see the Detailed Fix Review Results below.

ID Title Status

1 Ignored error values during file store operations Resolved

2 User and NKeyUser clone() methods can fail to deep copy an empty
allowed connection types list

Resolved

3 Non–constant time comparison of plaintext passwords Resolved

4 Risk of denial of service when restoring Streams Resolved

5 Inconsistent behavior around \r character in parser Unresolved

6 Use of unpinned third-party workflow Resolved

7 Use of non-TLS download in Travis CI configuration file Resolved

8 Missing mutex unlocks before return statements Resolved

9 Windows DLL loading susceptible to DLL hijacking attacks Resolved

10 HTTP servers are vulnerable to Slowloris denial-of-service attacks Resolved

​
 Trail of Bits​ 67​ NATS Server​
 PUBLIC​ ​ Security Assessment

Detailed Fix Review Results
TOB-NATS-1: Ignored error values during file store operations
Resolved in PR #5248. The mistaken variable noted in figure 1.1 has been corrected, and
error checks have been added for each rand.Read and eraseMsg call.

TOB-NATS-2: User and NKeyUser clone() methods can fail to deep copy an empty
allowed connection types list
Resolved in PR #5246. The problematic conditional check noted in figure 2.1 has been
corrected to account for empty maps.

TOB-NATS-3: Non–constant time comparison of plaintext passwords
Resolved in PR #5247. The noted passwords are now compared in constant time.

TOB-NATS-4: Risk of denial of service when restoring Streams
Resolved in commit 306781218cb0. The restore process now checks storage limits as it
uncompresses the data, and the process is stopped if the storage limit would be exceeded.

TOB-NATS-5: Inconsistent behavior around \r character in parser
Unresolved. A fix has not yet been implemented for this issue.

TOB-NATS-6: Use of unpinned third-party workflow
Resolved in PR #5837. The noted third-party workflows have all been pinned.

TOB-NATS-7: Use of non-TLS download in Travis CI configuration file
Resolved in PR #5514. The problematic plaintext URL has been replaced with an alternate
HTTPS source.

TOB-NATS-8: Missing mutex unlocks before return statements
Resolved in PR #5276. The missing mutex unlocks have been added.

TOB-NATS-9: Windows DLL loading susceptible to DLL hijacking attacks
Resolved in PR #5836. The noted unsafe instances of MustLoadDLL() have been replaced
by NewLazySystemDLL(), which is not susceptible to DLL hijacking.

TOB-NATS-10: HTTP servers are vulnerable to Slowloris denial-of-service attacks
Resolved in PR #5790. The HTTP servers have been configured with a five-second read
timeout.

​
 Trail of Bits​ 68​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://github.com/nats-io/nats-server/pull/5248
https://github.com/nats-io/nats-server/pull/5246
https://github.com/nats-io/nats-server/pull/5247
https://github.com/nats-io/nats-server/commit/306781218cb0e4509664f63946a44ca3ed38577f
https://github.com/nats-io/nats-server/pull/5837
https://github.com/nats-io/nats-server/pull/5514
https://github.com/nats-io/nats-server/pull/5276
https://github.com/nats-io/nats-server/pull/5836/
https://github.com/nats-io/nats-server/pull/5790/files

G. Fix Review Status Categories

The following table describes the statuses used to indicate whether an issue has been
sufficiently addressed.

Fix Status

Status Description

Undetermined The status of the issue was not determined during this engagement.

Unresolved The issue persists and has not been resolved.

Partially Resolved The issue persists but has been partially resolved.

Resolved The issue has been sufficiently resolved.

​
 Trail of Bits​ 69​ NATS Server​
 PUBLIC​ ​ Security Assessment

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.​
497 Carroll St., Space 71, Seventh Floor
Brooklyn, NY 11215
https://www.trailofbits.com​
info@trailofbits.com

​
 Trail of Bits​ 70​ NATS Server​
 PUBLIC​ ​ Security Assessment

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2025 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

Trail of Bits considers this report public information; it is licensed to Synadia
Communications, Inc. under the terms of the project statement of work and has been
made public at Synadia Communications, Inc.’s request. Material within this report may not
be reproduced or distributed in part or in whole without Trail of Bits' express written
permission.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through sources other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

​
 Trail of Bits​ 71​ NATS Server​
 PUBLIC​ ​ Security Assessment

	
	
	
	NATS Server
	Table of Contents
	
	Project Summary
	Executive Summary
	
	Project Goals
	Project Targets
	Project Coverage
	
	Threat Model
	Threat Model Scope
	Data Types
	Data Flow
	Components and Trust Zones
	
	Trust Zone Connections
	
	Threat Actors
	
	Threat Scenarios
	Recommendations

	Codebase Maturity Evaluation
	
	
	Summary of Findings
	
	Detailed Findings
	1. Ignored error values during file store operations
	
	2. User and NKeyUser clone() methods can fail to deep copy an empty allowed connection types list
	3. Non–constant time comparison of plaintext passwords
	4. Risk of denial of service when restoring Streams
	5. Inconsistent behavior around \r character in parser
	6. Use of unpinned third-party workflow
	7. Use of non-TLS download in Travis CI configuration file
	8. Missing mutex unlocks before return statements
	9. Windows DLL loading susceptible to DLL hijacking attacks
	10. HTTP servers are vulnerable to Slowloris denial-of-service attacks

	A. Vulnerability Categories
	B. Code Maturity Categories
	
	C. Code Quality Recommendations
	D. Instances of Unchecked Type Assertions
	E. Automated Testing Artifacts
	Fuzzing Inconsistent Behavior from TOB-NATS-5

	F. Automated Static Analysis
	D. Fix Review Results
	
	Detailed Fix Review Results

	G. Fix Review Status Categories
	About Trail of Bits
	
	Notices and Remarks

